[1] |
国家能源局. 2018年光伏发电统计信息. [EB/OL]. [2019-03-19]. http://www.nea.gov.cn/2019-03/19/c_137907428.htm.
|
[2] |
龚莺飞, 鲁宗相, 乔颖, 等. 光伏功率预测技术[J]. 电力系统自动化,2016,40(4):140-151GONG Yingfei, LU Zongxiang, QIAO Ying, et al. An overview of photovoltaic energy system output forecasting technology[J]. Automation of Electric Power Systems,2016,40(4):140-151(in Chinese)
|
[3] |
Jiménez-Pérez P F, Mora-López L. Modeling and forecasting hourly global solar radiation using clustering and classification techniques[J]. Solar Energy,2016(135):682-691.
|
[4] |
赵唯嘉, 张宁, 康重庆, 等. 光伏发电出力的条件预测误差概率分布估计方法[J]. 电力系统自动化,2015,39(16):8-15ZHAO Weijia, ZHANG Ning, KANG Chongqing, et al. A method of probabilistic distribution estimation of conditional forecast error for photovoltaic power generation[J]. Automation of Electric Power Systems,2015,39(16):8-15(in Chinese)
|
[5] |
李乐, 刘天琪. 基于近邻传播聚类和回声状态网络的光伏预测[J]. 电力自动化设备,2016,36(7):41-46LI Le, LIU Tianqi. PV power forecasting based on AP-ESN[J]. Electric Power Automation Equipment,2016,36(7):41-46(in Chinese)
|
[6] |
程启明, 张强, 程尹曼, 等. 基于密度峰值层次聚类的短期光伏功率预测模型[J]. 高电压技术,2017,43(4):164-172CHENG Qiming, ZHANG Qiang, Cheng Yinman, et al. Short-term photovoltaic power prediction model based on hierarchical clustering of density peaks algorithm[J]. High Voltage Engineering,2017,43(4):164-172(in Chinese)
|
[7] |
王昕, 黄柯, 郑益慧, 等. 基于萤火虫算法-广义回归神经网络的光伏发电功率组合预测[J]. 电网技术,2017,41(2):125-131WANG Xin, HUANG Ke, ZHENG Yihui, et al. Combined PV power forecast based on firefly algorithm-generalized regression neural network[J]. Power System Technology,2017,41(2):125-131(in Chinese)
|
[8] |
张雨金, 杨凌帆, 葛双冶, 等. 基于Kmeans-SVM的短期光伏发电功率预测[J]. 电力系统保护与控制,2018,46(21):124-130ZHANG Yujin, YANG Lingfan, GE Shuangye, et al. Short-term photovoltaic power forecasting based on Kmeans algorithm and support vector machine[J]. Power System Protection and Control,2018,46(21):124-130(in Chinese)
|
[9] |
程泽, 刘冲, 刘力. 基于相似时刻的光伏出力概率分布估计方法[J]. 电网技术,2017,41(2):448-454CHENG Ze, LIU Chong, LIU Li. A Method of Probabilistic Distribution Estimation of PV Generation Based on Similar Time of Day[J]. Power System Technology,2017,41(2):448-454(in Chinese)
|
[10] |
李建文, 焦衡, 刘凤梧, 等. 基于相似时段的分时段光伏出力短期预测[J]. 电力自动化设备,2018,38(8):183-188LI Jianwen, JIAO Heng, LIU Fengwu, et al. Short-time segmented photovoltaic output forecasting based on similar period[J]. Electric Power Automation Equipment,2018,38(8):183-188(in Chinese)
|
[11] |
Das U, Tey K, Seyedmahmoudian M, et al. SVR-based model to forecast pv power generation under different weather conditions[J]. Energies,2017,10(7):876.
|
[12] |
徐敏姣, 徐青山, 袁晓冬. 基于改进EMD及Elman算法的短期光伏功率预测研究[J]. 现代电力,2016,33(3):8-13XU Minjiao, XU Qingshan, YUAN Xiaodong. A short-term power forecasting model of photovoltaic system based on improved EMD and Elman neural network[J]. Modern Electric Power,2016,33(3):8-13(in Chinese)
|
[13] |
王守相, 王亚旻, 刘岩, 等. 基于经验模态分解和ELM神经网络的逐时太阳能辐照量预测[J]. 电力自动化设备,2014,34(8):7-12WANG Shouxiang, WANG Yamin, LIU Yan, et al. Hourly solar radiation forecasting based on EMD and ELM neural network[J]. Electric Power Automation Equipment,2014,34(8):7-12(in Chinese)
|
[14] |
李可军, 亓孝武, 魏本刚, 等. 基于核极限学习机误差预测修正的变压器顶层油温预测[J]. 高电压技术,2017,43(12):4045-4053LI Kejun, QI Xiaowu, WEI Bengang, et al. Prediction of transformer top oil temperature based on kernel extreme learning machine error prediction and correction[J]. High Voltage Engineering,2017,43(12):4045-4053(in Chinese)
|
[15] |
殷豪, 曾云, 孟安波, 等. 基于奇异谱分析-模糊信息粒化和极限学习机的风速多步区间预测[J]. 电网技术,2018,42(5):1467-1474YIN Hao, ZENG Yun, MENG Anbo, et al. Wind speed multi-step interval prediction based on singular spectrum analysis-fuzzy information granulation and extreme learning machine[J]. Power System Technology,2018,42(5):1467-1474(in Chinese)
|
[16] |
叶林, 陈政, 赵永宁, 等. 基于遗传算法-模糊径向基神经网络的光伏发电功率预测模型[J]. 电力系统自动化,2015,39(16):16-22YE Lin, CHEN Zheng, ZHAO Yongning, et al. Photovoltaic power forecasting model based on genetic algorithm and fuzzy radial basis function neural network[J]. Automation of Electric Power Systems,2015,39(16):16-22(in Chinese)
|
[17] |
陈中, 宗鹏鹏. 基于样本扩张灰色关联分析的光伏出力预测[J]. 太阳能学报,2017,38(11):2909-2915CHEN Zhong, ZONG Pengpeng. PV output forecast based on grey correlation analysis with expanded sample[J]. Acta Energiae Solaris Sinica,2017,38(11):2909-2915(in Chinese)
|
[18] |
张程熠, 唐雅洁, 李永杰, 等. 适用于小样本的神经网络光伏预测方法[J]. 电力自动化设备,2017,37(1):101-106, 111ZHANG Chengyi, TANG Yajie, LI Yongjie, et al. Photovoltaic power forecast based on neural network witha small number of samples[J]. Electric Power Automation Equipment,2017,37(1):101-106, 111(in Chinese)
|
[19] |
Marco Capóa, Aritz Péreza, Jose A. Lozanoa. An efficient approximation to the K-means clustering for massive data[J]. Knowledge-Based Systems,2017(117):56-69.
|
[20] |
Rodriguez A, Laio A. Machine learning. Clustering by fast search and find of density peak[J]. Science,2014,344(6191):1492.
|
[21] |
HUANG G B, ZHU Q Y, SIEW C K. Extreme learning machine: theory and applications[J]. Neurocomputing,2006,70(1):489-501.
|
[22] |
HUANG G B, ZHOU H, DING X, et al. Extreme learning machine for regression and multiclass classification[J]. IEEE Transactions on Systems Man & Cybernetics Part B,2012,42(2):513-529.
|